UUCMS. No.

B.M.S COLLEGE FOR WOMEN BENGALURU – 560004

III SEMESTER END EXAMINATION – JAN/FEB-2024

BSc-MATHEMATICS

REAL ANALYSIS -I AND ORDINARY DIFFERENTIAL EQUATIONS (NEP Scheme 2021-22 onwards F+R)

Course Code: MAT3DSC03 Duration: 2 ¹/₂ Hours Instructions: 1. Answer all the sections.

SECTION-A

I. Answer any SIX of the following. Each question carries TWO marks. (6x2=12)

- 1. Define limit of a sequence.
- 2. Test the convergence of the sequence $\left\{\frac{3n-4}{4n+2}\right\}$
- 3. State Raabe's test for the series of positive terms.
- 4. Test the convergence of the series $\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + \sqrt{\frac{3}{8}} + \dots$
- 5. Show that the equation $(x^2 ay)dx + (y^2 ax)dy = 0$ is exact.
- 6. Solve $p^2 4p + 3 = 0$ where $p = \frac{dy}{dx}$.
- 7. Find the particular integral of $\frac{d^2y}{dx^2} + y = \sin 3x$.
- 8. Verify the condition for Integrability for (yz + 2x)dx + (zx 2z)dy + (xy 2y)dz = 0

SECTION-B

II. Answer any FOUR of the following. Each question carries SIX marks. (4x6=24)

- 1. Discuss the behaviour of the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}$.
- 2. Show that the sequence $\{a_n\}$ where $a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is convergent.
- 3. Prove that a monotonic decreasing sequence bounded below is convergent.
- 4. State and prove D-Alembert's ratio test.
- 5. Test the convergence of the series $1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$
- 6. Find the sum to infinity of the series $1 + \frac{2}{6} + \frac{2.5}{6.12} + \frac{2.5.8}{6.12 + 18} + \cdots$

1

QP Code: 3015 Max marks: 60

SECTION-C

III. Answer any FOUR of the following. Each question carries SIX marks.

(4x6=24)

1. Solve $x \frac{dy}{dx} + (1-x)y = x^2 y^2$.

- 2. Find the general and singular solution of $y = px + sin^{-1}p$.
- 3. Prove that the family of confocal conics $\frac{x^2}{\lambda + a^2} + \frac{y^2}{\lambda + b^2} = 1$ is self-orthogonal, λ is a parameter.
- 4. Solve $(D^2 2D + 4)y = e^x cosx$.
- 5. Solve $\frac{dx}{dt} 7x + y = 0$; $\frac{dy}{dt} 2x 5y = 0$.
- 6. Solve $\frac{d^2y}{dx^2} + y = secx$ by the method of variation of parameters.